Math for 5 Dot Aperture Pattern

Overview:
Given a paste coverage ratio we want to calculate the diameter of 5 round apertures.

$$
\begin{array}{ll}
\mathrm{O} \mathrm{O} & \\
\mathrm{O} & \text { Final Round Pattern } \\
\mathrm{O} \mathrm{O}
\end{array}
$$

Initial Pad Are $=\mathrm{K}$
Reduction $=\mathrm{R} \quad(0.5=50 \%)$
Diameter of Round = D

Final Area $=\mathrm{K} * \mathrm{R}=\mathrm{F}$
Area of a Round Flash $=3.14 *(\mathrm{D} / 2.0)^{* *} 2$

So

$$
\begin{aligned}
& \mathrm{F}=5 * 3.14 *(\mathrm{D} / 2.0) * * 2 \\
& \mathrm{~F}=15.7 * .25 * \mathrm{D}^{* * 2} \\
& \mathrm{~F}=4 * \mathrm{D}^{* * 2} \\
& \mathrm{D}=\text { Sqrt (F) } / 2 \text { (Pretty Close) }
\end{aligned}
$$

Example
Lets say you have a 1 inch by 1 inch pad and you want 75% paste coverage. So F (Final Area) $=.75$ insq

So $\mathrm{D}=.43$ inch Diameter flash
Lets Check:

Each hole is $(.43 / 2)^{* *} 2 * 3.14=0.145$ insq so 5 holes is .725 insq (Pretty Close)

